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In the first part of this paper we study the asymptotic cone of an im-
mersion M» — M**Y(c), and prove that such an immersion is minimal if
and only if there exist n orthogonal asymptotic directions u;. This will imply
that the sectional curvatures K(u;, u;) are less than or equal to c¢. This is a
stronger version of a theorem stating that the Ricci curvature is less than or
equal to (n — 1)c for a minimal immersion, and gives a metric condition for M*
to be immersed minimally in A/**'(c). This can be generalized to the case of
codimension p if the curvature of the normal bundle vanishes.

In the second part of this paper we classify all conformally euclidean mini-
mal hypersurfaces of euclidean space, and show that there is only one surface
of revolution, a generalized catenoid, which belongs to this class. All results in
this paper are of local nature.

1. Preliminaries

We consider an n-dimensional manifold M” immersed or imbedded in an
(n + p)-dimensional manifold M**?(c) of constant sectional curvature c: M™—
M™+?(c). The metric on M™*? and its Levi-Civita connection D induce a
Riemannian metric on M*, both metrics being denoted by { , >, and its Levi-
Civita connection . We denote the normal bundle of the immersion by N(M),
tangent vectors to M™ by u, v, w, x, y, tangent vectors to Mrer by X,Y,Z, W,
and normal vectors to M™ by &, 7, - - -.

The curvature tensor of M™ is denoted by R(u, v)w, the sectional curvature by
K(u, v), the Ricci curvature by Ric (i, v), and the scalar curvature by S. A
splitting into the tangent and normal parts gives:

Dg=—Au+ Ve,

where A is the second fundamental form, and /! is a connection in the nor-
mal bundle whose curvature is denoted by R(u, v)&.
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In this paper we need two of the imbedding equations; one is the Gauss
equation :

{Ru, v)w, x> = c({v, wplu, x> — {u, w)<{v, x))
+ 20 KA 0), WA (1), X) — (A (1), W< A (0), X

&, - -+, &, being an orthonormal basis of the normal space, and the other one
is the Ricci equation :

RHw, v)8, 1) = <[4, 4,]u,v>

where [4,, 4,] = A; oA, — A, A,. The Codazzi equation is not needed here.
The use of the Ricci equation gives that if the curvature R+ of the normal bundle
vanishes, then [4,, 4,] = 0 which means that all the 4, can be diagonalized
simultaneously, independent of the normal £&. For codimension 1 we write 4
instead of 4, where & is a locally chosen normal. The mean curvature normal
7 is defined by :

trace 4, = <&, * for all normals £.

We also need the contracted version of the Gauss equation, which gives the Ricci
curvature and scalar curvature in terms of the second fundamental form. This is
easily seen to be:

Ric (u,v) = (n — Decu, v) + T {4 (W), v) trace A, — <A, @), 4.,(0) ,
S =nn— Dec+ |9|* — [|4]*.

In the case of a minimal submanifold, i.e., » = 0, these equations show the
following well-known theorem (see e.g. [8]).

Theorem 1. If M™ — M™*?(¢) is a minimal immersion, then the Ricci
curvature and scalar curvature satisfy

Ric (u,9) < (n — Dec, 0>, S < n(n — e,

and the equality holds everywhere if and only if M™ is totally geodesic in
Mr+2(c).

This is the only known metric restriction for M™ to have a minimal immer-
sion in M™*?(c). In § 3 we shall prove a somewhat stronger condition on the
sectional curvature.

We now recall a few other known theorems for 1-codimensional immersions,
which we will need later. One defines the type number #(p) by #(p) = rank 4(p)
where 4 is the second fundamental form. The following is a theorem of Beez
(see [1, p. 368]). -

Theorem 2. For an immersion M* — M™+(c) the type number is an inner
geometric invariant, i.e., can be expressed in terms of the curvature operator
(except that the two cases t(p) = 0 and t(p) = 1 cannot be distinguished since
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in both cases the curvature is 0). If t(p) > 3 for all p, then the immersion is
rigid (already locally), i.e., there exist no other immersions of M® into M™*\(c)
except the given one composed with isometries of the ambient space. If t(p)
< 2 for all p, then there do exist other immersions.

Theorem 3. Suppose that M — M™*'(c) is a minimal immersion.

(1) If ¢ <0, then M™ cannot have constant sectional or Ricci curvature
unless it is totally geodesic.

(i) If ¢ > 0, then M™ cannot have constant sectional curvature unless it
is totally geodesic, and if the Ricci curvature is constant then M™ is locally
a product of two spaces of constant curvature. If in addition M™*(c) is the unit
(n + 1)-sphere S*+1, then the immersion is the standard one of M™ = S™(+/ nW)
X S*~™(s/(n — m)/n) into $*** as a minimal hypersurface where S7(k) is an
r-sphere of radius k. (See [3] or [1, p. 386].)

From the Gauss equations follows easily (see [9, p. 200])

Theorem 4. If M? — M**}(c) satisfies Ric (u,v) = O for all u, v, then
K(u,v) = 0 for all u,v.

2. The asymptotic cone

In this section M™*? need not be of constant sectional curvature. If u ¢ T,M
with {A4.(u), vy = 0 then u is called an asymptotic direction with respect to &.
The set of asymptotic directions in T',M with respect to a fixed £ is clearly a
cone, i.e., with respect to u also Au is an asymptotic direction. This set is
called the asymptotic cone.

Theorem 1. Suppose that M® — M™*? is a minimal immersion, and & a
fixed normal vector.

(1) If <A.(w),v) is positive or negative semidefinite, then the asymptotic
cone is a linear subspace of T ,M of dimension equal to the dimension of the
kernel of A..

(i) If {A.(w),v) is indefinite, then the asymptotic cone consists of the
linear subspace ker A, orthogonal to it a cone, which is not contained in any
lower dimensional linear subspace, and all sums of both kinds of vectors. This
cone is a differentiable (n — 1)-dimensional submanifold of T ,M except at the
points of ker 4.

Proof. (i) is clear.

(ii) The last statement follows from the fact that the function f: (T,M —
ker A,) — R given by f(u) = {A.(u),u)> has O as a regular value ; O actually
appears as a value of f since {4,.(u), v)> is indefinite. The part of the asymp-
totic cone orthogonal to ker 4, is not contained in any linear subspace, since
the asymptotic vectors would otherwise form a (n — 1)-dimensional linear sub-
space V! of T,M and {4.(u), v> = O for u, v ¢ V*~'. Therefore there exists
an (n — 2)-dimensional subspace W”~? of ¥*~! contained in ker 4,. But this
cannot be possible since then A4, restricted to W+ would have only one asymp-
totic direction.
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Corollary 1. If {A,(u),v)> is indefinite, then there exist n linearly inde-
pendent asymptotic directions with respect to &. This is especially the case if
trace A, = 0.

Theorem 2. There exist n orthogonal asymptotzc directions with respect to

¢ if and only if trace A, = 0. »

Proof. Ifn orthogonal asymptotic directions exist, then clearly trace 4, =
0. If trace 4, = 0, we do induction on n. If n =2, let u,v be the two
orthogonal eigenvectors of 4, : 4. (u) = u, A, (v) = uv, trace 4, =2+ p =
0. Then x =u + v, y =u — v are two orthogonal asymptotic directions
since (A (u + v),u + v =24+pu=<A4u—v),u—vy=0,{u+v,u—
v) = 0. Now we want to prove the number of orthogonal asymptotic directions
to be n. By Corollary 1 there exists an asymptotic direction x: <{4.x,x> = 0.
Take the linear subspace W C T,M orthogonal to x. Then there exists a
symmetric linear mapping A,: W — W defined by: {4.(w), v)> = {4.(u), v)>
forallu, v € Wand trace 4, = 3, {4, (;), u)=3; {4 (), up=—<A:(x), x>
= 0 ({u;} is an orthonormal basis of W), and by induction hypothesis there
exist n — 1 orthogonal asymptotic directions of A, which are also asymptotic
directions of A4,.

Corollary 2. M" — M+ is minimal if and only if there exist n orthogonal
asymptotic directions. (See also [10, p. 24].)

Remark. If the codimension is greater than 1, then the asymptotic cones
for different & are different in general and coincident in special cases as fol-
lows: If M*— M?**? is a minimal immersion, and &, y are fixed normal vectors
with [4,,4,] =0, trace 4, = trace 4, = 0 and 4, % 0, 4, = 0, then the
asymptotic cones of 4, and 4, coincide, In fact, ker 4, = ker 4, = 0 and the
asymptotic cones consist of u + v, u — v where u, v are the common eigen-
vectors of A, and A4,. For n > 2 this statement becomes false, even if one
assumes ker 4, = ker 4, in addition.

Theorem 2 can be generalized in this direction as follows:

Theorem 3. If M™ — M*®*? is q minimal immersion, [4,,4,] =0 and
trace A, = O for all &,7. Then there exist n orthogonal vectors which are
asymptotzc with respect to all &.

Proof. If n = 2, then the claim follows as in Theorem 2 since all 4, have
the same eigenvectors. To do the induction, take u; to be the common eigen-
vectors of all 4,. Then x = 3, u; is an asymptotic direction with respect to all
¢. Take W orthogonal to x, and define 4, as in Theorem 2. Then [4,, 4,] =
trace 4, = 0, and by assumption there exist n — 1 orthogonal vectors in W
asymptotic with respect to A, and therefore also with respect to A,.

Remark. For n = 2 the conclusion also follows from [11] (if M**? =
M™*?(c)) since then M? lies in a 3-dimensional totally geodesic subspace of M »+?.
It is not true, if we assume only [4,, 4,] = 0, that there exist » linearly in-
dependent vectors asymptotic with respect to all 4,.
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3. Curvature properties of minimal submanifolds

Theorem 1. Suppose that M™ — M™*'(c) is an immersion.

(1) <A@, v)> is semidefinite if and only if K(u,v) > ¢ forall u,v e T,M.

(ii) Suppose that {A(u), v) is indefinite. Then for any u,v in the asymp-
totic cone, K(u, v) < cand K(u, v) < c¢ if and only if u + v is not asymptotic.

Proof. (i) Let u, be the eigenvectors of A, i.e., A(u;) = A;u;. Then one
shows easily through the Gauss equations that K(u, v) > ¢ for all u, v if and
only if K(u;, u;) > ¢ for all i, j. But from the Gauss equation it follows

K(u;, u;) = (R, upug, ) = ¢ + (AW, uylAW,), u;y = 24; + ¢ .

If K(u;, u;) > c, then 2,4; > 0 and therefore all 1; > 0 or all 2, < 0. If on the
other hand all 2, > 0 or < 0, then K(u;, 4;) > c¢ and from the above remark
it follows that K(u, v) > ¢ for all u, v.

Gy If {A@),uy = {A@),»> =0, then K(u,v) =c — {Aw),v>* < c,
and if (A(u + v),u + v> = 2{A(u),v) % 0 then K(u, v) < c.

From Corollary 1 of § 2 follows

Corollary 1. If {A(u),v) is indefinite, then there exist n linearly inde-
pendent u; with K(u;,u;) < c. If in addition ker A = O, then there exist n
such u; with K(u;, u;) < c.

From Corollary 2 of § 2 follows

Theorem 2. If M* — M™*\(¢) is a minimal immersion so that trace A = 0,
then there exist n orthogonal vectors u, such that K(u;, u;) < c.

In view of Theorem 1 of § 1, Ric (1;) < (n — 1)c in this case. Since Ric (u;)
= 7,; K(u;, u;) for u; orthonormal, Theorem 2 is stronger than the correspond-
ing theorem with a condition on the Ricci curvature, and gives a metric con-
dition for M" to have a minimal immersion. One can generalize this to the case
of codimension p.

Theorem 3. If M* — M™*?(c) is a minimal immersion with R+ = 0, then
there exists a basis {u;} of T,M with K(u;, u;) < ¢ and {u;, u;y = 0.

Proof. According to the Ricci equations of § 1 the conditions of Theorem
3 of §2 are satisfied, so that there exist »n vectors u; which are asymptotic with
respect to all A,. Thus the Gauss equations imply K(x,, u;) < c.

From K(u,,u;) < ¢ for all i, j it does not follow that K(, v) < c for all u,
v since u;, u; are not eigenvectors of 4. In fact, K(u, v) < ¢ is a very strong
condition : :

Theorem 4. Suppose that M* — M™*'(c) is a minimal immersion. If K(u, v)
< cforallu,veT,Mthenrank A < 2.

Proof. 1f A(u) = Au,;, then K(u;, u;) = ¢ + 4,4;. From K(u;, u;) < c it
follows that 4,4; < 0, and only two of the 2; can be distinct from 0, for other-
wise the sign of the 2; cannot be chosen properly. Therefore rank 4 < 2.

Corollary 2. Suppose that M* — Mr+Y(c) is a minimal immersion. Then
K(u, vy < ¢ for all u,v if and only if rank A = 2 or 0.

Proof. If rank A = 1, then trace 4 = 0. On the other hand, if rank 4 = O,



340 M. PINL & W. ZILLER

then K(u,v) = ¢ for all u,v; if rank A = 2, then the eigenvalues of 4 are
4, —2,0, and the sectional curvatures K(u;, u;) = —2A* + ¢ or c. Therefore
K(u;,u;) < c, and K(u,v) < ¢ for all u,v e T,M.

This corollary characterizes the minimal immersions M* — M"*!(c) with
sectional curvatures <c¢ (except the totally geodesic ones) as the ones with
type number 2, and by the theorem of Beez, Theorem 2 of § 1 these are non-
rigid.

To conclude this paragraph we propose a question with some partial results.
In Theorem 3 of § 1 we saw that there exist no minimal immersions M" —
M *+1(¢), ¢ < 0, of constant sectional or Ricci curvature. Do there exist mini-
mal immersions of constant scalar curvature? The next theorem gives a partial
result.

Theorem 5. If M™ — M™*Y(c), ¢ < 0, is a minimal immersion, rank 4 = 2,
or n — 1 of the eigenvalues of A are equal, then the scalar curvature S cannot
be constant, except for totally geodesic M™.

Proof. Since S = n(n — )c + ||| — |AF and [|4|F = 33; 4, if A, are the
eigenvalues of A, then S = n(n — 1)c — > Ai. If rank A = 2, then 4, —4,
0 are the eigenvalues of 4. Therefore S = n(n — 1)c — 22 If § = constant,
then A =constant. But according to [1] there can be only two different eigenvalues
of A if the eigenvalues are constant. Thus A = 0 and 4 = 0. If the eigenvalues
of 4 are A with multiplicity » — 1 and —(n — 1)4, then S = n(n — 1)c —
n(n — 1)4 and again 2 = constant. Therefore all eigenvalues of A are constant
again, and [1, p. 374] shows that (n — 1)A* = ¢ < 0. Hence 2 =0 and 4 = 0.

One would hope to prove that in the other cases the scalar curvature can-
not be constant either. But the only thing we found is the following. From the
equation for the scalar curvature it follows that |4 || is constant. Now one can
use an equation of Simon’s type [7, p. 372] to conclude that | A || is constant,
and also the norms of the higher covariant derivatives are constant. But this
information does not seem to help very much. As Theorem 3 of § 1 shows, the
situation is completely different if ¢ > 0. See also [6].

4. Conformally euclidean minimal hypersurfaces

In this section we classify all conformally euclidean minimal hypersurfacesofa
euclidean (n+ 1)-space R**!, n>4. One starts with a theorem of Schouten [12]:

Theorem 1. If M* — R"*, n > 4, is a conformally euclidean immersion,
then at least n — 1 of the eigenvalues of A are equal.

If one assumes now that the immersion is also minimal, then the eigen-
values of 4 must be 1 with multiplicities » — 1 and —(n — 1)4. Note that,
unless A = 0, rank 4 = n so that such hypersurfaces are rigid. If one looks
for examples of this sort, one first thinks of hypersurfaces obtained by rotating
a plane curve. In more detail let x, = u, x, = f(u) be a curve in the x,x,-plane
lying in the halfspace x; > 0. If R™*! has coordinates x,, - - -, X,,1, then one



MINIMAL HYPERSURFACES 341

can let this curve rotate around the x,-axis, and thus obtain a hypersurface in
R**!, In a chart (u, ¢, - - -, ,,_;) this would look like:

X, =UCOs@, , X, =1fu), xX;=using cosg, .-,

X, = USN@ -+ COSQy_y, Xpy = USing, --- siD@,_; .

One can easily see from the geometry of the situation that the coordinate
directions are all eigenvectors of 4 and the eigenvalues of the ¢;-directions
are all the same. Therefore, according to Theorem 1, all such hypersurfaces
of revolution are conformally euclidean. We will now give the eigenvalues ex-
plicitly :

— fll # — fl
VA + D uvl + 7

the second one being of multiplicity » — 1. They are just the same as those

for surfaces of revolution in R* and can be determined in the same way. If one

requires that the hypersurface be minimal, f has to satisfy the differential equa-

tion

L T Famaced =1 _"F _q,

f w 7 1+17

integration of which gives f = a(u?**~? — a%~%. For n = 2 this is the catenoid
in R®, which is known to be the only minimal hypersurface of revolution in R®.
For n > 2 this is a generalized catenoid, the curve f being steeper as n is larger.
We have therefore proved

Theorem 2. The only minimal hypersurface of revolution (except the hy-
perplane) in euclidean space is the generalized catenoid.

The generalized catenoid is also a conformally euclidean minimal hypersur-
face. We now prove

Theorem 3. The generalized catenoid is the only conformally eeuclidean
minimal hypersurface (except the hyperplane) in R**', n > 4.

Proof. A classification of Kulkarni [2] states that a conformally euclidean
hypersurface belongs locally to one of the following 4 types:

1. A=0orrank 4 = 1, and therefore K(u, v) = 0 for all u, v.

2. A = 2-1d, and therefore M* = §*.

3. The above surfaces of revolution.

4. A tube of constant length around a curve in R**'.
Clearly a minimal hypersurface (except the hyperplane) does not belong to
type 1 or 2. It does not belong to type 4 either, since there the vectors, tangent
to the tube but orthogonal to the curve, are n — 1 eigenvectors of A with the
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same constant eigenvalue. Therefore the last eigenvalue of 4 has also to be
constant, and the argument used in the proof of Theorem 5 of § 3 shows that
this is impossible.

But we have already shown that the only minimal hypersurface which belongs
to type 3 is the generalized catenoid.

Remark. Theorems 1 and 3 are false for » = 3. In fact, one can show that
the cotton tensor [9, p. 92] of the above described catenoid M* — R* does not
vanish identically, so that M® is not conformally euclidean, although two of the
eigenvalues of 4 are equal. v

One can given another interesting example of surfaces of revolution. In
Theorem 4 of § 1 we saw that for an immersion M* — R**! if Ric = O then
K = 0. One then asks if there exists a hypersurface of R**! with zero scalar
curvature but nonzero sectional curvature. This is indeed the case. An example
is a surface of revolution. From S =|z|f — [A|f = (5:4) — 2. & =
Dixj Ai44, Where ; are the eigenvalues of A, it follows that if 2, ¢ are the two
eigenvalues of A as above, then

' —_ 1 (n —_ 2)f/2 2f/‘fll
S=@m—10n—22+20n—Dig=" ( )
(1= D0 = D¢ + 2 = D= 2 (B2 4
n—2
2u
-f(1 + %) with the solution f = =+ (qu®~* — 1)~%. This is a surface of revolu-
tion with § = 0 and X # 0.

If one requires § = 0, then one has the differential equation f* = —
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